If it's not what You are looking for type in the equation solver your own equation and let us solve it.
23x-x^2=130
We move all terms to the left:
23x-x^2-(130)=0
We add all the numbers together, and all the variables
-1x^2+23x-130=0
a = -1; b = 23; c = -130;
Δ = b2-4ac
Δ = 232-4·(-1)·(-130)
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-3}{2*-1}=\frac{-26}{-2} =+13 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+3}{2*-1}=\frac{-20}{-2} =+10 $
| P-5=-11+3p | | 5.2(4-(11-(3x+5))+6)=-18.6 | | 1=0.1x-0.8x-34 | | 2÷3(3k+4)=10 | | 1d/2-8=3 | | (3x-2)^2=(x-5)(9x+4) | | 2/3x-5+4/5x=-2 | | -8(x+3)+30=10-9x | | 3/2x+3=20 | | -3x2x-3=6X+9 | | 10x8=12x-18 | | 3√4x+1-5=4 | | 9x/8+2=11x/10 | | 3/2x+x=90 | | 3x+3^4=4x-3^4 | | 2x(x+3)=2X2+15 | | 128=16(t)^2+240(t) | | 0=-(2+3k)-(1-3k) | | 3g–-4=19 | | 4g=2g+8 | | (4k+1)^2+8(4k+1)+15=0 | | 128=16^2+240(t) | | x^2-120x-2700=0 | | 5x-2x=-12-3x | | 11/16z+7/8z=5/16 | | A=1/2*3.14*r^2 | | 2/3x-1/6=1/2x+5-6 | | 27-5a/2=6 | | 128=12^2+240(t) | | 10m-(2/5)=9(3/5) | | 4x+x−3=0 | | 13-5x=2x-1 |